Reversible & Irreversible Processes

- Example of a Reversible Process:
 - Cylinder must be pulled or pushed slowly enough (quasistatically) that the system remains in thermal equilibrium (isothermal).
- Change where system is always in thermal equilibrium: reversible process
- Change where system is not always in thermal equilibrium: irreversible process
 - Examples of irreversible processes:
 - Free expansion of a gas
 - Melting of ice in warmer liquid
 - Frictional heating
 - Anything that is real

All real processes are irreversible!

Heat Engine

- An engine is a device that cyclically transforms thermal energy (heat?) into mechanical energy (useful work).
 - Efficiency: Fraction of heat flow becomes mechanical work:
 \[e = \frac{W}{Q_H} = \frac{Q_H - Q_L}{Q_H} = 1 - \frac{Q_L}{Q_H} \]
- A minimal version of an engine has two reservoirs at different temperatures \(T_H \) and \(T_L \), and follows a idealized reversible cycle known as the Carnot cycle.
 - Efficiency of the Carnot cycle
 \[e_C = \frac{W}{Q_H} = 1 - \frac{Q_L}{Q_H} = 1 - \frac{T_L}{T_H} \]
Heat Pumps, Refrigerators, and Air Conditioners

- Heat pumps, refrigerators, and air conditioners are engines run in reverse:
 - Refrigerator and air conditions remove heat from the cold reservoir and put it into the surroundings (hot reservoir), keeping the food/room cold.
 - A heat pump takes energy from the cold reservoir and puts it into a room or house (hot reservoir), thereby warming it.
 - In either case, energy must be added!
 - Work must be performed ON the system!

Refrigerators and Air Conditioners

Schematic diagram of a refrigerator:

Schematic diagram of a room air conditioner:
Heat Pumps and Refrigerators

- Since the (idealized) Carnot engine is the most efficient heat engine, the Carnot refrigerator is the most efficient refrigerator.
 - Coefficient of Performance:
 \[CP = \frac{Q_L}{W} = \frac{Q_L}{Q_H - Q_L} = \frac{T_L}{T_H - T_L} \]

- Heat Pumps work similarly but have a different objective, namely warm the house.
 - Coefficient of Performance:
 \[CP = \frac{Q_H}{W} = \frac{Q_H}{Q_H - Q_L} = \frac{T_H}{T_H - T_L} \]

The specifications of a freezer claim that it can remove 80 cal/s from the compartment at -20°C and release 94 cal/s into the room at 25°C while using 60 W of electrical energy to drive the compressor. Can you trust this statement?
The Second Law of Thermodynamics

There are many ways of expressing the second law of thermodynamics; here are two:

- The Clausius form: It is impossible to construct a cyclic engine whose only effect is to transfer thermal energy from a colder body to a hotter body.
 - Spontaneous heat flow always goes from the higher-temperature body to the lower-temperature one.
- The Kelvin form: It is impossible to construct a cyclic engine that converts thermal energy from a body into an equivalent amount of mechanical work without a further change in its surroundings.
 - Thermal energy cannot be entirely converted to work.
 - A 100% efficient engine is impossible.

Entropy and the Second Law

- Entropy is a measure of disorder.
 -
 -

- Entropy is a measure of the energy unavailable to do work.
 -
 -
Entropy and the Second Law

- In the Carnot cycle:
 \[e_c = \frac{W}{Q_H} = 1 - \frac{Q_L}{Q_H} = 1 - \frac{T_L}{T_H} \]

- Some arbitrary cycle
 - Divide into a number or Carnot cycles:
 - In the limit

Entropy and the Second Law

- But the Carnot cycle relies on 2 isothermal and 2 adiabatic processes.
 - Friction, Turbulence, etc.
 - For an irreversible cycle, there is less work done for the same amount of absorbed heat; therefore the entropy increases through the cycle:

- Definition of Entropy:
Entropy and the Second Law

- The entropy of an isolated system never decreases;
 - spontaneous (irreversible) processes always increase entropy.
- All the consequences of the second law of thermodynamics follow from the treatment of entropy as a measure of disorder.
 - Making engines that would convert mechanical energy entirely to work would require entropy to decrease in isolated system – can’t happen.
 - Many familiar processes increase entropy – shuffling cards, breaking eggs, and so on.
 - We never see these processes spontaneously happening in reverse – a movie played backwards looks silly. This directionality is referred to as the arrow of time.