Dynamics

- Kinematics
 - Geometry of motion
 - Position, Velocity, Acceleration
 - 1-D, Chapter 2
 - 2-D, Chapter 3
 - Special applications
 - Constant acceleration
 - Projectile motion

- Kinetics
 - Relation between forces and motion
 - \(F = ma \)
 - Module 2
 - Chapters 4-6
 - Energy methods & impulse-momentum
 - Module 3
 - Chapters 7-9

Rectilinear Motion

- Motion along a line
- Need three things:
 1.
 2.
 3.
- This is our coordinate system.
- Motion variables are vectors since they have magnitude and direction.

Module 4 – Kinematics and Kinetics of Rotational Motion

Chapters 10 & 11

Velocity

- Average velocity
- Instantaneous velocity
- Work backwards

 - Slope of position graph = velocity
 - Area under velocity graph = change in position

Acceleration

- Average acceleration
- Instantaneous acceleration
- Work backwards

 - Slope of velocity graph = acceleration
 - Area under acceleration graph = change in velocity
Example 1

\[s(t) = 6t^2 - t^3 \]

where,
- \(t \) is in seconds
- \(s \) is in feet

Qualitatively plot \(v-t \) and \(a-t \) graphs.

Physically describe the motion.

Example 2

\[a(t) = 12t^2 \]

\[v_0 = 200 \]

\[s_0 = -500 \]

where,
- \(t \) is in seconds
- \(s \) is in m

Qualitatively plot \(v-t \) and \(s-t \) graphs.

Physically describe the motion.

Example 3

\[v(t) = 4t \]

\[s_0 = -10 \]

where,
- \(t \) is in seconds
- \(s \) is in feet

Qualitatively plot \(a-t \) and \(s-t \) graphs.

Physically describe the motion.

The Kinematics Ladder

Down the ladder:

\[s(t) = s_0 + \int v(t)\,dt \]

\[v(t) = \frac{ds}{dt} \]

\[a(t) = \frac{dv}{dt} \]

Up the ladder:

\[v(t) = v_0 + \int a(t)\,dt \]