Today’s Topics:
- Power
- Conservative Forces
- Gravitational Potential Energy

Power: \[P = \frac{W}{\Delta t} = \frac{F \Delta x}{\Delta t} = \]

Calculus form

Vector form

\[P = \]

Units of Power:
- SI: 1 J/s = 1 watt (W)
- USC: 550 ft-lb/s = 1 horsepower (hp)
- Conversion: 1 hp = 746 W

Example Problem – Horsepower

Determine the engine size (in hp) required for a 3000 pound car to climb a 10° hill at a steady speed of 50 mph (73.3 ft/s). Assume a retarding force of 150 lb from internal friction and wind resistance, and that the engine is 70% efficient.

\[\text{1 hp} = 550 \text{ ft-lb/sec} \]

Conservative Forces

- If the work done by a force on an object is _______________ of the path taken by the object from initial to final position then the force is _______________.

- If a conservative force acts on an object and the object follows a path that brings it back to its _______________ _______________ then the force will have done no net work on the object.

- Only need to know ___________ and ___________ positions.

- Which is a conservative force:

Conservative and Non-conservative Forces

- Conservative forces
 - ________
 - ________

- Non-conservative (path dependent) forces
 - ________
 - ________

- Where does energy go with non-conservative forces?
 - ________
 - ________
 - ________
Gravitational Potential Energy

- Account for work from gravitational force based on initial and final position.
- Work that ________________ by gravity on the object if the object went from its current height to some reference position, \(h_{\text{datum}} \).
- Coordinate system is defined so that \(h_{\text{datum}} \) is __________.

\[
U_{\text{grav}} =
\]

What sign do we use for \(g \)? __________

Suggestions on datum:
- Set at or below ______ elevation of problem.
- Gravitational potential energy will always be ________.

Conservation of Mechanical Energy

\[
K_0 + W_{\text{net}} = K_f
\]

Account for gravitational potential energy separately.

Sometimes convenient to separate \(W_{\text{other}} \) into work coming into the system, \(W_{\text{in}} \), and energy losses, \(E_{\text{loss}} \).

Example Problem

Roller coaster velocity
- \(F = ma \) approach
- Energy method

\[
K_0 + U_{\text{grav}0} + W_{\text{in}} = K_f + U_{\text{grav}f} + E_{\text{loss}}
\]

Which coaster has the greater speed at the bottom?

Which coaster reaches the bottom first?

A. Coaster 1
B. Coaster 2
C. Both the same
D. Cannot determine

0.25-kg Cart Rolling Down Track

\[
h_0 = 0.2 \text{ m} \quad h_f = 0.0 \text{ m}
\]

Car travels 1.6 m

<table>
<thead>
<tr>
<th>Case</th>
<th>Initial Velocity</th>
<th>Friction</th>
<th>Work</th>
<th>(V_f) (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0 m/s</td>
<td>0</td>
<td>0</td>
<td>0.0 m/s</td>
</tr>
<tr>
<td>B</td>
<td>0.8 m/s down</td>
<td>0</td>
<td>0</td>
<td>0.8 m/s</td>
</tr>
<tr>
<td>C</td>
<td>0.8 m/s up</td>
<td>0</td>
<td>0</td>
<td>0.8 m/s</td>
</tr>
<tr>
<td>D</td>
<td>0.8 m/s down</td>
<td>0.12 N</td>
<td>0</td>
<td>0.8 m/s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(KE_0)</th>
<th>(PE_0)</th>
<th>(W_{\text{in}})</th>
<th>(KE_f)</th>
<th>(PE_f)</th>
<th>(E_{\text{loss}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>=</td>
<td>=</td>
<td></td>
<td>=</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>=</td>
<td>=</td>
<td></td>
<td>=</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>=</td>
<td>=</td>
<td></td>
<td>=</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>=</td>
<td>=</td>
<td></td>
<td>=</td>
<td>=</td>
<td></td>
</tr>
</tbody>
</table>