1. (14 pts) A 1000 kg car is subjected to a variable force given by the equation:
\[y = -15N + (25 N/m) \cdot x \]
When the car had traveled 26 m, its velocity was 15 m/s. What was the car's speed when it traveled 5 m?

2. (14 pts) A 1350 lb roller coaster starting from rest at point A is subjected to a constant friction force of 120 lb over the entire run. Assuming that at point B the coaster's speed is 18 ft/s, what is the length of the track between points A and B?

\[\frac{1}{2} \cdot 1350 \cdot (115 ft - 88 ft) = \frac{1}{2} \cdot 1350 \cdot (18 ft + 120 ft + 2) \]

\[X = \frac{347.2 ft}{10} \]

\[X = \frac{347.2 ft}{10} \]
3. A 40 lb box of candy is sliding across the floor. The box is moving with an unknown initial speed \(v \) when it contacts an initially uncompressed spring with stiffness of 300 lb/ft. There is a friction force of 33 lb between the box and floor. If the spring is compressed 0.7 ft when the box comes to a stop, what is the initial speed \(v \)?

![Image]

\[12.5 \text{ ft/s} \]

Point A: Spring uncompressed

Point B: Spring compressed 0.7 ft

\[\frac{1}{2} m v_A^2 = \frac{1}{2} k x_A^2 + V_f \]

\[\frac{1}{2} m v_A^2 = \frac{1}{2} k x_B^2 + V_f \text{ friction} \]

\[\frac{1}{2} m \cdot 40 \text{ lb} = \frac{1}{2} \cdot 400 \text{ lb/ft} \cdot (0.7 \text{ ft})^2 + \frac{0.7 \text{ ft} \cdot 33 \text{ lb}}{2} \]

\[v_A = 12.47 \text{ ft/s} \]

4. (14 pts) Three identical masses move as depicted in the picture. Mass 1 moves with an initial velocity of 3.5 ft/s at 40\(^\circ\) below the x-axis. Mass 2 moves with an initial velocity of 3 ft/s along the x-axis, and mass 3 moves with an initial velocity of 3.5 ft/s at 40\(^\circ\) above the x-axis. When they collide all three masses stick together. What is the final velocity (magnitude and direction) of the combined masses?

\[4.1 \text{ ft/s} \]

5. (14 pts) A 3 kg mass moving at -8 m/s collides with a 4 kg mass moving at -6 m/s. If the collision is perfectly elastic, determine the velocity of the 3 kg mass after the collision.

\[v_1 = \frac{8}{\sqrt{13}} \text{ m/s} \]

\[v_2 = \frac{6}{\sqrt{13}} \text{ m/s} \]

\[m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2' \]

\[\frac{3 \cdot 8 \text{ m/s} + 4 \text{ m/s} \cdot (-6 \text{ m/s})}{3 \text{ kg}} = 3 \text{ kg} \cdot v_1' + 4 \text{ kg} \cdot v_2' \]

\[3 v_1' + 4 v_2' = 0 \]

From I + II: \(v_1' = -8 \text{ m/s} \)

\(v_2' = +6 \text{ m/s} \)

6. (10 pts) A professor, whose mass is 75 kg, is sliding on a 120 kg sled with a constant velocity of 5 m/s. After 6 seconds, he decides to jump off the sled. His velocity (relative to the ground) is 1.5 m/s in the opposite direction of the sled. What is the sled's velocity after the professor has jumped off of it?

\[4.06 \text{ m/s} \]

\[1.5 \text{ m/s} \]

\[5 \text{ m/s} \]

\[(m_p \cdot m_s) v = m_p \cdot v_p' + m_s \cdot v_s' \]

\((75 + 120) \text{ m/s} \cdot 5 \text{ m/s} = 75 \text{ kg} \cdot (-1.5 \text{ m/s}) + 120 \text{ kg} \cdot v_s' \)

\[v_s' = 9.06 \text{ m/s} \]
7. (10 pts) A ball is dropped to the floor from a height of 2 meters. The coefficient of restitution between the ball and the floor is 0.8. What is the speed of the ball just after it bounces off the floor?

\[v_f = \sqrt{2gh_a} = \sqrt{2 \times 9.81 \text{ m/s}^2 \times 2 \text{ m}} = -6.36 \text{ m/s} \]

\[e = \frac{v_f}{v_i} \Rightarrow v_i = e \cdot v_f = 0.8 \times (-6.36) = -5.08 \text{ m/s} \]

8. (10 pts) A crane lifts a 1700 lb weight over a height of 30 ft in 10 seconds. What is the average power of the crane (in hp)?

\[P = \frac{W}{t} = \frac{1700 \text{ lb} \cdot 30 \text{ ft}}{10 \text{ sec} \cdot 550 \text{ ft/lb}} = 9.27 \text{ hp} \]

Please remain seated if there are less than 5 minutes to go in the exam so as not to disturb those still trying to finish. If you finish early you should go back and check your work.