Coefficient of Restitution

<table>
<thead>
<tr>
<th>Type of Collision</th>
<th>Final Relative Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfectly Inelastic</td>
<td>Zero; objects move together</td>
</tr>
<tr>
<td>Real World</td>
<td>Between two limits; defined by coefficient of restitution</td>
</tr>
<tr>
<td>Perfectly Elastic</td>
<td>Same magnitude as original relative velocity; opposite sign</td>
</tr>
</tbody>
</table>

\[e = \frac{- (v'_1 - v'_2)}{v_1 - v_2} \]

\[e = 0 \] Perfectly ________

\[e = 1 \] Perfectly ________

Coefficient of Restitution: Tennis Ball

Given: A regulation tennis ball has to bounce between a height of 53 to 56 inches when dropped from a height of 100 inches onto a concrete floor.

Required: Coefficient of restitution of regulation tennis ball

Solution:

\[e = \frac{- (v'_1 - v'_2)}{v_1 - v_2} \]

Collisions in 2 dimensions

- Plane of _______
- Line of _______

x motion - _______
\[v_{A_x} = v_{B_x} = \]

y motion: Forces and impulse
\[m_A v_{A_y} + m_B v_{B_y} = m_A v'_{A_y} + m_B v'_{B_y} \]

\[e = \frac{- (v'_{A_y} - v'_{B_y})}{v_{A_y} - v_{B_y}} \]

Car Crash

Two cars – same mass – collide head-on. After the collision the cars skid with their brakes locked as shown. Determine the speed of car B and the effective coefficient of restitution.

\[v_A = 5 \text{ km/hr (1.389 m/s)} \text{ right} \]
\[u_k = 0.3 \]
Example: Shooting Pool I

Given: The cue ball A is given an initial speed of 5 m/s. It makes direct perfectly elastic impact with ball B, giving ball B a speed of 5 m/s. Ball B then makes contact with cushion C ($e = 0.6$). Each ball has a mass of 0.4 kg. Neglect friction and the size of each ball.

Required: Determine the speed of ball B and the angle θ after ball B hits cushion C.

- If $e = 1$, will θ be:
 - A. $> 30^\circ$
 - B. $= 30^\circ$
 - C. $< 30^\circ$

- If $e = 0.6$, will θ be:
 - A. $> 30^\circ$
 - B. $= 30^\circ$
 - C. $< 30^\circ$

- If $e = 0$, will θ be:
 - A. $= 30^\circ$
 - B. $30^\circ < \theta < 90^\circ$
 - C. $= 90^\circ$

Solution:

Example: Shooting Pool II

Given: A pool ball moving with a speed of 5 m/s strikes a pool ball moving with a speed of 3 m/s. The coefficient of restitution is 0.90. The line of impact is the line connecting the centers of the two balls.

Required: Determine the velocity of both balls after impact.