1) Calculate the moment of the force F about the point O.

$$F = \begin{bmatrix} 3z^2 + 2x^4 + 4y^6 \end{bmatrix} \cdot 50 + 10k \cdot B$$

$$M_o = F_{ab} = F$$

$$M_o = \begin{bmatrix} 3z^2 + 2x^4 + 4y^6 \end{bmatrix} \cdot (-20 + 50z - 10k) \cdot lb$$

$$\vec{M}_o = \begin{bmatrix} -2.80 & 9.0 & 110 \end{bmatrix} \cdot lb$$

2) The suspended load weighs 2 kN. Use the method of joints to find the force in member DE.

$$\sum F_x = F_{\text{eq}} + 20 \cdot 25 = \Sigma F_y = 5.558 \text{ kN}$$

$$F_{\text{eq}} = 5.558 \text{ kN}$$

3) Replace the given force-couple system with an equivalent force-couple system located at point O. Draw the equivalent force-couple system on the diagram below. Label the resultant force in magnitude-angle format.

$$\sum \mathbf{M}_o = 0$$

$$178 \text{ kN}$$

4) The 200 lb force is located halfway between points A and B and it is perpendicular to the bar AB. What is the magnitude of the reaction force at pin A? Note: the slot is smooth.

$$|\mathbf{A}| = 100 \text{ lb}$$

5) Write the 60 lb force in Cartesian vector format.

$$\mathbf{F}_{\text{AB}} = \begin{bmatrix} 6z^2 + (7 - 4.33) \cdot k \end{bmatrix} + (0 - 2.5) \cdot \mathbf{k}$$

$$\mathbf{F}_{\text{AB}} = \begin{bmatrix} 6z^2 + 2.47 - 2.5 \end{bmatrix} \cdot \mathbf{k}$$

$$\mathbf{F}_{\text{AB}} = \begin{bmatrix} 0.854 \cdot \mathbf{k} + 0.380 \cdot \mathbf{j} - 0.356 \cdot \mathbf{k} \end{bmatrix} \cdot \mathbf{k}$$

$$\sum \mathbf{F}_{\text{AB}} = \begin{bmatrix} 51.2 \cdot \mathbf{j} + 22.8 \cdot \mathbf{k} \end{bmatrix} \cdot \mathbf{k}$$

6) Use the method of sections to find the force in member GH. In the figure, $L = 2$ m.

$$F_{\text{GH}} = 600 \text{ N}$$

$$\sum \mathbf{M}_o = -600 \cdot (4w) + F_{\text{GH}} \cdot (3w) = 0$$

$$F_{\text{GH}} = 600 \text{ N}$$
7) A motorcyclist exits the ramp 1 m above the ground and at a 30° angle from the horizontal. The motorcyclist remains in the air for 1.5 seconds before landing at point B. Calculate the speed when he leaves the ramp:

\[v = v_0 + \frac{1}{2} a t^2 \]

\[v = \sqrt{v_y^2 + v_x^2} \]

\[v_y = v_0 \sin 30° \]

\[v_x = 13.38 \text{ m/s} \]

8) The 15 Mg boxcar A is coasting at 1.5 m/s on a horizontal track when it encounters a 12 Mg tank car B coasting at 0.75 m/s as shown. When the cars hit they couple together. Calculate the velocity of both cars after the collision:

\[m_v v_1 + m_v v_2 = (m_v + m_v) v_f \]

\[1.5 \times 1.5 + 1.2 \times 0.75 = 1.5 \times 1.5 + 0.75 \]

\[v_f = \frac{1.5 \times 1.5 + 0.75}{1.5 + 0.75} \]

\[\frac{v_f}{v_1} = 0.55 \text{ m/s} \]

9) Two cyclists, A and B, are traveling counterclockwise around a circular track as shown. At this instant, both cyclists have a speed of 8 ft/s. The speed of A is increasing at a rate of 1.5 ft/s² while the speed of B is constant. Calculate the magnitude of the acceleration of both cyclists:

\[a_n = \frac{v^2}{r} = \frac{8^2}{5} = 1.28 \text{ ft/s}^2 \]

\[\frac{v^2}{r} = \frac{(1.5)^2}{1.28} = 1.97 \text{ ft/s}^2 \]

10) At this instant, the winding drum \(D \) is drawing in the cable with a speed of 12 m/s, however, the speed is decreasing at a rate of 2 m/s². Calculate the acceleration of the crate:

\[\frac{Z_a}{a_a} = 0 \]

\[\frac{Z_a}{a_a} = 0 \]

\[a_n = 1 \text{ m/s}^2 \]

\[a_B = \frac{1}{4} \text{ m/s}^2 \]

11) Assuming that the force acting on the 2 g bullet, as it passes horizontally through the barrel of a rifle, varies with time in the manner shown, determine the maximum net force \(F_0 \) applied to the bullet when fired. The muzzle velocity is 500 m/s when \(t = 0.75 \) ms. Neglect friction and note that the time axis is in ms (i.e., 10^{-3} s):

\[\frac{m_v + \frac{1}{2} m_v \left(\frac{1}{2} \cdot 0.75 \right) v_2^2}{0 + \frac{1}{2} m_v \left(0.02 \cdot 0.75 \right) v_2^2} = 0.002 \text{ kg (500 m/s)} \]

\[F_0 = 267 N = 2.67 \text{ kN} \]

12) The mass of ball \(A \) is 3 kg and the mass of block \(B \) is 4 kg. The coefficient of restitution \(e = 0.5 \). Block \(B \) is initially at rest. Calculate the velocity of block \(B \) immediately after the collision:

\[v = \text{directly opposite} \]

\[m \text{V}_A + m \text{V}_B = m \text{V}_A + m \text{V}_B \]

\[3 \times 0 + 4 \times 0 = 3 \times 0 + 4 \times 0 \]

\[e = \frac{v_2 - v_1}{v_2 - v_1} \Rightarrow v_2 = 0.5 (1.20 m/s) + v_1 = 4.698 + v_1 \]

\[2.19 = 3 \times 0 + 4 (4.698) \]

\[9.208 = 7 \text{V}_2 \]

\[\text{V}_B = 1.31 \text{ m/s} \]

\[\text{V}_B = 4.698 + 1.31 = 6.01 \text{ m/s} \]
13) The mass of A is 12 kg and the mass of B is 6 kg. Determine the acceleration of A. Neglect friction and the mass of the pulleys and the rope.

\[\sum F_y = 0 \to T = \frac{200 \text{ lb}}{2} = 100 \text{ lb} \]

\[a_y = \frac{0 - 0}{0.8947} = 0 \text{ m/s}^2 \]

\[a_x = \frac{0 - 0}{0.8947} = 0 \text{ m/s}^2 \]

14) If the crate weighs 600 lb and its acceleration is 3 ft/s² to the right, what is the magnitude of the force, F?

\[\sum F_x = 0 \to T = \frac{600 \text{ lb}}{3} = 200 \text{ lb} \]

15) The 0.5 kg ball of negligible size is fired up the smooth vertical circular track using a spring plunger. The spring is uncompressed when \(s = 0 \). Determine the minimum distance \(s \) the plunger must be pulled back and released so that the ball will make it around the loop and land on the platform at B.

\[\frac{1}{2} k s^2 = m g (3.5 m) \]

\[s = \sqrt{\frac{2 m g (3.5 m)}{k}} \]

\[v = \sqrt{\frac{2 m g (3.5 m)}{k}} = 3.8 \text{ m/s} \]

16) The 20 lb crate is initial rolling down the smooth plane at a speed of 6 ft/s. A constant force of \(F = 9 \text{ lb} \) is applied to the crate as shown. Determine the time it will take to bring the crate to rest.

\[m v_f + F t = m v_i \]

\[20 \text{ lb} (-6 \text{ ft/s}) + 9 \text{ lb} t = 0 \]

\[t = \frac{1.725 \text{ sec}}{} \]