Problem 13-30

Given:

Required: Determine the tension developed in the cords attached to each block and the acceleration of the blocks. Neglect the mass of the pulleys and cords.

Equations of Motion:

1. \[T_A = 78.48N \]
2. \[T_B = 58.86N \]

Equations of Motion continued:

1. \[T_A - 78.48N = (8kg)(9.81)x \]
2. \[T_B - 58.86N = (6kg)(9.81)x \]

Position Coordinate Equation:

1. \[l_1 = s_A + (s_B - s_C) \]
2. \[l_2 = 2s_C - s_B \]

Eliminate \(s_C \) because we are only interested in \(A \) and \(B \):

1. \[s_C = 2s_A - 1 \]
2. \[l_2 = 2(2s_A - 1) + s_B \]
3. \[l_2 = 4s_A - 2 + s_B \]
4. \[l_2 = 4s_A + 5 + s_A \]

First derivative:

1. \[2 = 4V_A + V_B \]
2. \[2 = 4V_A + V_B \]

Second derivative:

1. \[0 = 4V_A - V_B \]
2. \[0 = 4V_A - 5V_B \]
Problem 13-30 continued

Solve Equations 1, 2, 3, and 4.

Substituting 3 into 1 yields:
\[4T_b - 78.98N = \left(\frac{8 \text{ kg}}{6 \text{ m}}\right)(-20) \Rightarrow 0 = -5T_b + 9.81 \]

Substituting 4 into 2 yields:
\[T_a - 58.86N = \left(\frac{6 \text{ m}}{3 \text{ m}}\right)(-40A) = 240A \]

\[T_b = 58.86N = 24\left[-5T_b + 9.81\right] \]
\[13T_b = 294.3N \]
\[T_b = 22.6N \]
\[T_a = 4(22.6N) \]
\[T_a = 90.6N \]

and \[0 = -5T_b + 9.81 \]
\[0 = -5(22.6) + 9.81 \]
\[0 = -1.49 \text{ m/s}^2 \quad \text{or} \quad 0 = 1.49 \text{ m/s}^2 \]

and \[a_6 = -40A \]
\[a_6 = -4(-1.49 \text{ m/s}^2) \]
\[a_6 = 5.96 \text{ m/s}^2 \quad \text{or} \quad a_6 = 5.96 \text{ m/s}^2 \]