In Fig. 2-25, let the angle between the vector \(\mathbf{A} \) and the hypotenuse \(A' \) in the \(xy \) plane be \(\theta \), and let the angle between the hypotenuse \(A' \) and the \(x \) axis be \(\phi \). By inspection, we see that

\[
A \cos \theta = A' \\
A' \cos \phi = A_x \\
A' \sin \phi = A_y \\
A \sin \theta = A_z
\]

By inspection of Fig. 2-26, we see that

\[
A \cos \alpha = A_x \\
A \cos \beta = A_y \\
A \cos \gamma = A_z
\]

Comparing these two observations reveals that

\[
\cos \alpha = \cos \theta \cos \phi \\
\cos \beta = \cos \theta \sin \phi \\
\cos \gamma = \sin \theta
\]

The unit vector pointing in the direction of \(\mathbf{A} \) is then

\[
\mathbf{u}_A = \cos \theta \cos \phi \mathbf{i} + \cos \theta \sin \phi \mathbf{j} + \sin \theta \mathbf{k}
\]

When this method is used for problem 2-125, we find the direction of \(\mathbf{F}_1 \) to be

\[
\mathbf{u}_1 = \cos 30^\circ \sin 30^\circ \mathbf{i} + \cos 30^\circ \cos 30^\circ \mathbf{j} - \sin 30^\circ \mathbf{k}
\]

\[
= \frac{\sqrt{3}}{4} \mathbf{i} + \frac{3}{4} \mathbf{j} - \frac{1}{2} \mathbf{k}
\]

\[
= 0.433 \mathbf{i} + 0.750 \mathbf{j} - 0.500 \mathbf{k}
\]